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Abstract

Dynamic flood routing models based on the four-point implicit finite-difference
solution of the complete one-dimensional Saint-Venant equations of unsteady flow are
inherently deterministic. Such a model (FLDWAV) developed by the National Weather
Service for real-time flood forecasting has been enhanced with a stochastic estimator
based on an extended Kalman filter to provide optimal updating capabilities utilizing real-
time observed river stages. The stochastic enhancement is described, and selected appli-
cations of the enhanced model spanning a wide range of unsteady flows are presented.

In ion

Channel flood routing is important in improving the transport of water through
man-made or natural waterways and in determining necessary actions to protect life and
property from the effects of flooding. Many channel routing models have been
developed, and those based on the complete one-dimensional hydrodynamic equations
(Saint-Venant) have found increasing use in the engineering community. Such dynamic
channel routing models are based entirely on deterministic considerations, and their
accuracy is largely dependent on the accuracy of the model input, such as the specified
hydraulic parameters within the mathematical equations used by the model, as well as
boundary and initial conditions. Traditional deterministic methods cannot reflect the
effects of possible inaccuracies in the equations, parameters, and boundary and initial
conditions. When model results are applied to engineering practice, a margin of safety
is often assigned to provide some degree of protection against the unknown effects. On
the other hand, statistical models are receiving more attention because of their capability
of reflecting the effects of uncertainties in the accuracy of the mathematical model,
hydraulic parameters, and boundary and initial conditions. The Kalman filter is a
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statistical method that provides an updating technique to improve the simulation of
unsteady flows for real-time river flood forecasting.

The U.S. National Weather Service (NWS) has been developing a new dynamic
channel flood routing model (FLDWAV) to replace the popular DAMBRK and
DWOPER dynamic models (Fread, 1985). A recent enhancement to the FLDWAV
model is the addition of a stochastic real-time estimator for optimal updating of the
model’s predictions using real-time observations of river stages. In this paper, the tech-
nique of real-time dynamic flood routing using the NWS FLDWAYV model with Kalman
filter updating is presented. The FLDWAYV model is based on implicit, nonlinear finite-
difference approximations of the one-dimensional Saint-Venant equations of unsteady
flow. The stochastic estimator uses an extended Kalman filter to provide optimal up-
dating estimates. These are achieved by combining the predictions of the FLDWAV
model with real-time observations modified by the Kalman filter gain factor. An efficient
inverse matrix solution technique is used to determine the transition matrix in computing
the Kalman filter gain factor. Selected applications of real-time estimation with the en-
hanced FLDWAYV model, spanning a wide range of types of flood waves, are presented.

FLDWAYV Algorithm and Featur

Basic Equations. The FLDWAYV (Fread, 1985) model is a generalized channel flood
routing model. It is based on an implicit finite-difference solution of the conservation
form of the extended Saint-Venant equations of unsteady flow. The basic equations are:

dQ/ox + ds (A+Ay/dt - q = 0 (1)
3, Q/ot + (Q*/A)/dx + gA (dn/dx + S, + S,) = 0 @)
where: St = n?|Q|Q/(NAZR*3) and S, = K_/2g - 3(Q/A)%/dx 3)

in which x is distance along the longitudinal axis of the waterway, t is time, Q is
discharge, A is active cross-sectional area, A, is inactive (off-channel storage) cross-
sectional area, q is lateral inflow (positive) or outflow (negative), S. and s, are depth-
dependent sinuosity correction factors, g is the gravity acceleration constant, h is water
surface elevation, S; is friction slope computed via the Manning formula, n is the
Manning’s resistance coefficient, R is the hydraulic radius, S, is the local loss slope, K,
is an expansion (negative) or contraction (positive) coefficient, A = 1 for the metric
system of units and A = 2.21 for the English system.

Solution Algorithm. The four-point weighted, implicit finite-difference approximation
is used in FLDWALV to transform the continuous, nonlinear partial differential equations
of Saint-Venant into nonlinear algebraic equations. For a river delineated with N cross-
sections, the four-point discretization algorithm produces the following 2N-2 equations:

£:(Q 7, 0™, QL WL Q) hi, @l hd) = 0 i=1,N-1 @)
i i .
f2i+1 (Q;’ yh;, ’ Qil+1yl'lg+1’QiJ, hll’ Qij¢1’ hij«o-l) = 0 1=19 N-l (5)

in which i refers to the i-th cross section along the river, j-1 and j denote the number of
the time line in the x-t solution domain. Since the stages and discharges at (j-1)-th time-



line, (Q;, hy, Qj4, hy4y);.; are known, the state variables in Egs. (4-5) are Q and h at j-th
time line (Q;, by, Qi4y» hyyy);

Equations (4-5), together with two boundary equations, form a system of discrete,
implicit, nonlinear equations which define the relationship of the state variables (Qy5hy,
... Qn,hy) between the j-th time line and the (j-1)-th time line; this system can be
expressed as:

F(Yj-l’ Yj’ tj-l’ tj) =0 ©6)

in which F is a vector of functions as defined by Egs. (4-5) and the two boundary
equations, and Y is a vector of state variables with 2N components, i.e.,

Yj(zi‘l) = (Qi)j; Yj(zi) = (hi)j (i=1,...N) D
YJ = (Qp h[’ seeey QN: hN)t'tj (8)

The Newton-Raphson functional iterative method is used in FLDWAYV to solve
Eq. (6). The initial conditions, Y(t=0), are automatically obtained within FLDWAYV via
a steady flow backwater computation or specified as data input for unsteady flows
occurring at t=0.

Special features. The FLDWAV model has several special features including: (1)
simulation of flows in a single channel or multiple interconnected channels (network); (2)
simulation of flows that change from subcritical to supercritical or conversely;
(3) simulation of flows that change from free surface to pressurized or conversely;
(4) treatment of sinuosity effects of meandering rivers; (5) an assortment of internal
boundary conditions to simulate time-dependent dam breaches, gate controlled flows,
assorted spillway flows, bridge/roadway-embankment overtopping flows, and levee
overtopping and crevasse flows; (6) an assortment of specified external boundary
conditions for discharge time-series, water surface elevation time-series, stage-discharge
single-valued or looped relations; (7) automatic calibration of Manning’s n; (8) automatic
selection of computational time and distance steps; and (9) the metric or English system
of units.

Extended Kalman Filter Enhancement of FLDWAYV

Egs. (4-5), along with two boundary equations, form a system of discrete, implicit
nonlinear equations as represented by Eq. (6). In order to account for the uncertainties
existing in the mathematical equations, as well as boundary and initial conditions, one can
transform this deterministic dynamic system into a stochastic dynamic system by adding
Gaussian white noise processes to the equations. Eq. (6) can be rewritten in a stochastic
sense as:

F(Yi, Y5 40, 1) = W, ©)

in which Y is the vector of system state variables defined by Eq. (8), j refers to the state
at j-th time line (t=tj), W is a Gaussian white noise vector with covariance Q, i.e.,

E(W) = 0; cov(W;, W,) = E(W;Wy) = Qb (10)
where & is the Krnoecker operator.



Assuming that real-time measurements (observations) of river water stages and/or
discharges at gaging stations along the river are available at discrete times tj(i =0,1,2,....)
and the errors in the measurements are represented by white noise processes, one can
derive a system of measurement equations at the x-coordinates corresponding to the
locations of gaging stations. The measurement equations consist of a linear combination
of the system state variables (corrupted by uncorrelated noise) which can be written in
vector-matrix notation as:

Z; = H;Y;+V, (11)

where ZJ is the set of measurements at time t and HJ is the measurement matrix at time

; it describes the linear combination of state variables which comprise Z; in the absence
of noise. V. is the noise associated with the errors of the measurements; it has the
following statistics:

E(V,) = 0; cov(V;,V,) = E(V,V}) = R, (12)

in which R is the covariance of V.

In order to apply a linear Kalman filtering algorithm to the discrete nonlinear,
implicit dynamic system (Eq. (9)) to obtain a practical optimal estimation for Y; using
updated information (the new measurement, Zj), one can expand F in Eq. (6) in a Taylor
series about a discrete reference state trajectory to get a linearized system. Using the 4-
pt implicit finite-difference solution algorithm of the FLDWAYV model, the predictive
estimation for the state variables at t=t; (denoted as Y;; ;) is obtained from Eq. (6) with
Y;_; replaced by the previous optimal estimation Y;_;|; ;. The nonlinear, implicit equation
(left hand of Eq. (9)) can be linearized about YJ 1)j1 and Y;):, using the Taylor
expansion and retaining only the first-order apprommatlon Eq. (&J) is thus transformed
into the following linear stochastic system:

Y =&, Y W, . (13)
YJ = Yj - YJIJ'I; Yj-l = Y_]—l - Yj'llj'l (14)
) 1 O Y0500

) The covariances of Yj* and Yj'_l are equal to those of Y; and Y, , respectively.
The real-time estimator is thus available within FLDWAY in this particular application
of the linear Kalman filtering algorithm. The filtering algorithm can be summarized via
the following steps: (1) based on the optimal estimation of Y at ti1 (Y.1);-1), @ predictive
estimation of Y for the new time tJ (YJ .1) is computed from the FLDWAV model; (2)
the covariance of this predictive estxmatlon (P;j-1) is computed by the following equation:

Pjiot = 8Py B + Qe (16)

in which P_” _1 is the covariance of Y; (RIIRE (3) the Kalman gain matrix for time 4 is

determined by the following equation:

= T -1
K; = Py, B (P B + R) (17



(4) when the new measurement (Zy) is available, the predictive estimation is updated to
produce the optimal state estimation of Y for time t;, (Y;};), by applying the following
equation:

Y = Y1+ K25 - HyY,; ] (18)
(5) the covariance of Y;); is computed by the following equation:
Py; = 0 - KH{JPy; (19)

in which I is the identity matrix; and (6) steps 1 through 5 are repeated, incrementing the
time step.

Applications

The first application of the model is a 291.7 mile reach of the Lower Mississippi
River (LM) from Red River Landing to Venice. A total of 25 cross-sections located at
unequal intervals ranging from 5 to 20 miles are used to describe the reach. The average
channel bottom slope is a very flat (0.0000064). Typical rising time of the flood waves
is about 30 days. The discharge hydrograph and rating curve are used as upstream and
downstream boundary conditions in the simulation. The Manning’s n vs. discharge
relation for each reach bounded by gauging stations is calibrated within the FLDWAV
model using the 1969 spring flood. In this example, a historical flood (the 1963 flood)
is used to check the performance of the real-time estimator. The accuracy of predictions
of any flood routing model depends on the accuracy of the specified boundary conditions.
The performance of the real-time estimator used in a case where the boundary conditions
are not correct is presented in Figures 1-2. Figure 1 shows the observed upstream
boundary discharge hydrograph and three simulated boundary conditions with errors, and
Figure 2 presents the average RMS error of eight gauging stations vs. the forecasting
time with and without the Kalman filter updating. In all three cases, significant
improvement in the predictions is achieved when using the Kalman filter; the
improvement increases as the forecasting time is reduced from the S-day to lesser lead-
times.

The second example is the 130-mile reach of the lower Columbia River (C) below
Bonneville Dam, including the 25-mile tributary reach of the lower Willamette River.
This reach of the Columbia has a very flat slope (0.000011), and the flows are affected
by the tide from the Pacific Ocean. The tidal effect extends as far upstream as the
tailwater of Bonneville Dam during periods of low flow. Reversals in discharge due to
tidal effects during low flow are possible as far as 110 miles upstream. Typical rising
time in tidal fluctuations is about 6 hours. A total of 27 cross sections with unequal
distance intervals ranging from 0.6 to 12 miles are selected to describe the river system.
Upstream and downstream boundaries are observed discharges and stages, respectively.
The Manning n vs. water elevations relations were calibrated using FLDWAY for a 4-
day period in 1974. The real-time estimator is applied to a 2-day period in 1979. Since
the flow in this reach is significantly affected by the backwater of the tide, the model
response to the accuracy of the downstream boundary condition is presented in
Figures 3-4. Figure 3 shows a period of observed stage hydrograph and two simulated
boundary conditions with different types of error. Figure 4 compares the average RMS
error of four intermediate gauging stations vs. the forecast lead-time. It shows that



significant improvement in predictions can be achieved only when forecast lead-time is
less than about 4 hours in this rapidly varied wave situation.
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The Kalman filter type real-time estimator based on one-dimensional hydrodynamic
equations is very useful when it is combined with the flood routing model FLDWAV

It uses the well-developed algorithms of FLDWAYV and provides the generalized cha: .
routing model with the stochastic analysis capability and the function of updating oy
optimal use of the real-time on-line observations. = Computationally efficient
improvements in real-time flood forecasting can be achieved using this enhanced flood
routing model for typical river floodwaves; however, negligible improvements are
obtained for tidal generated waves except for lead-times less than 4 hours.
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